O.P.Code: 23EC0408

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

B.Tech. II Year II Semester Regular Examinations July/August-2025 ELECTRONIC CIRCUITS ANALYSIS

(Electronics & Communications Engineering)

Tiı	me: 3	(Electronics & Communications Engineering) 3 Hours	Max.	Mark	s: 70
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a	What is the need for multistage amplifiers?	CO1	L1	2M
	b	What is a Differential amplifier?	CO ₂	L2	2 M
	c	List the internal capacitances of BJT differential amplifier.	CO1	L1	2M
	d	Define fT and fβ.	CO1	L1	2M
	e	List the four basic feedback topologies.	CO1	L2	2M
	\mathbf{f}	Explain Barkhausen criterion.	CO1	L2	2M
	g	Define Power amplifier. List the different types of power amplifiers.	CO3	L1	2M
	h	What are the advantages of power MOSFETs over power BJTs?	CO ₃	L1	2M
	i	A tuned amplifier has a resonant frequency of 1 MHz and bandwidth of	CO ₂	L4	2M
		10 kHz. Calculate the Quality Factor (Q) of the amplifier.			
	j	Define Multivibrator and mention its applications.	CO ₂	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Discuss various coupling schemes used in multistage amplifiers.	CO ₂	L2	5M
		Explain the operation of RC coupled amplifier with frequency response	CO1	L2	5M
		curve.			
		Sunn OR			
3	a	Construct the basic structure of MOS and BJT differential amplifiers.	CO1	L2	5M
	b	Analyze BJT differential amplifier with a neat circuit diagram for	CO ₂	L3	5M
		common mode operation.			
		UNIT-II			
4	a	Derive the break frequencies of CS (Common Source) amplifier at low	CO ₂	L3	8M
		frequencies. Obtain the expression for overall gain or transfer function			
		and draw the frequency response			
	b	Draw the high frequency model of MOSFET.	CO1	L1	2 M
		OR			
5	a	With relevant circuit diagrams, explain the internal capacitive effects of	CO ₂	L2	5M
		MOSFET.			
	b	With relevant diagrams, explain the internal capacitive effects of BJT.	CO ₂	L2	5M
		UNIT-III			
6	a	Draw the general structure of feedback amplifier and derive the equation	CO3	L1	5M
		for gain of feedback amplifier.			
	b	A feedback amplifier has a gain of 1000 without feedback. If 10% of the	CO3	L 4	5M
		output voltage is fed back to the input in a negative feedback			
		configuration. Calculate the gain of the amplifier with feedback.			
		OR			

7	a Construct an RC phase shift oscillator using BJT and derive the expressions for frequency of oscillations and condition for sustained oscillations.	CO4	L3	6M
	b Determine the frequency of oscillations when a RC phase shift oscillator	CO4	L3	4M
	has R=10k Ω , C=0.01 μ F and RC = 2.2 K Ω . Also find the minimum current gain needed for this purpose.			
	UNIT-IV			
8	a Sketch the collector current waveforms for class A, class B, class AB and	CO3	L3	5M
	class C amplifier stages.			
	b The loudspeaker of 8 Ω is connected to the secondary of the output	CO ₃	L3	5M
	transformer of a class A Amplifier. The quiescent collector current is 140			
	mA. The turns ratio of transformer is 3:1. The collector supply voltage is 10 V. If ac power delivered to the loudspeaker is 0.48 W, assuming ideal			
	transformer, determine (i) AC power developed across primary, (ii) RMS			
	value of load voltage, (iii) RMS value of primary voltage, (iv) RMS			
	value of load current.			
	OR			
9	a Compare push-pull Class B and Complementary symmetry Class B power amplifiers.	CO3	L3	5M
	b Describe the structure of Power MOSFET. UNIT-V	CO3	L2	5M
10	a Compare different types of tuned amplifiers.	CO1	L2	5M
	b A single tuned RF amplifier uses a transistor with an output resistance of	CO ₃	L3	5M
	50 KΩ, output capacitance of 15 pF and internal resistance of next stage			
	is 20 k Ω . The tuned circuit consists of 47 pF capacitance in parallel with			
	series combination of $1\mu H$ inductance and 2Ω resistance. Determine resonant frequency, effective quality factor and bandwidth of the circuit.			
	OR			
11	a Explain the operation of Schmitt trigger.	CO3	L2	5M
	b Determine the value of capacitors to be used in an Astable multivibrator	CO5	L3	5M
	to provide a train pulse 2µs wide at a repetition rate of 100 KHz, if R1			

*** END ***

 $=R2=20k\Omega$.